

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: BloodHound Support [https://support.bloodhoundenterprise.io/hc/en-us]

BloodHound: Six Degrees of Domain Admin

[image: BloodHound logo]
BloodHound uses graph theory to reveal the hidden and often unintended
relationships within an Active Directory environment. As of version 4.0, BloodHound
now also supports Azure. Attackers can use
BloodHound to easily identify highly complex attack paths that would otherwise
be impossible to quickly identify. Defenders can use BloodHound to identify
and eliminate those same attack paths. Both blue and red teams can use
BloodHound to easily gain a deeper understanding of privilege relationships in
an Active Directory environment.

Install

Depending on which operating system you’re using, install Neo4j, then
download the BloodHound GUI. You can also build the BloodHound GUI from source.

OS-specific instructions:
Windows |
macOS |
Linux

Collect Your First Dataset

BloodHound is a data analysis tool and needs data to be useful. There are two
officially supported data collection tools for BloodHound: SharpHound and
AzureHound. Download AzureHound and/or SharpHound to collect your first data set. From a
domain-joined system in your target Active Directory environnment, collecting
your first dataset is quite simple:

C:\> SharpHound.exe

Collecting your first data set with AzureHound:

PS C:\> Import-Module Az
PS C:\> Import-Module AzureADPreview
PS C:\> Connect-AzureAD
PS C:\> Connect-AzAccount
PS C:\> . .\AzureHound.ps1
PS C:\> Invoke-AzureHound

Import and Explore the Data

By default, SharpHound and AzureHound will generate several JSON files and place them into one
zip. Drag and drop that zip into the BloodHound GUI, and BloodHound will import
that data.

Once complete, you’re ready to explore the data. Search for the Domain Users
group using the search bar in the upper left. See if the Domain Users group has
local admin rights anywhere, or control of any objects in Active Directory.

Click the Pathfinding button (looks like a road) and search for Domain Admins
in the box that drops below. See if there are any attack paths from Domain Users
to Domain Admins.

For a full tour of the BloodHound GUI and its data analysis capabilities, see
the Data Analysis section.

Getting Help

Have a bug report or feature request? Open an issue on the BloodHound repo [https://www.github.com/BloodHoundAD/BloodHound]

Need assistance? Join us in the BloodHound Gang Slack [https://bloodhoundgang.herokuapp.com]

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: Install BloodHound Community Edition with Docker Compose [https://support.bloodhoundenterprise.io/hc/en-us/articles/17468450058267]

Windows

Walkthrough Video

 macOS

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: Install BloodHound Community Edition with Docker Compose [https://support.bloodhoundenterprise.io/hc/en-us/articles/17468450058267]

macOS

Install neo4j

Warning

Neo4j 5 suffers from severe performance regression issues. Until further notice, please use Neo4j 4.4.13

	Download the macOS version of neo4j Community Edition Server from https://neo4j.com/download-center/#community. Do not install from brew.

	Unzip the neo4j folder.

	In a macOS terminal, change directories to the neo4j folder.

	Change to the bin directory, then type:

$./neo4j console

This will start neo4j as a console application. You should eventually see “Remote interface available at http://localhost:7474/”

	Open a web browser and navigate to http://localhost:7474/. You should see the neo4j web console.

	Authenticate to neo4j in the web console with username neo4j, password neo4j. You’ll be prompted to change this password.

Download the BloodHound GUI

	Download the latest version of the BloodHound GUI from https://github.com/BloodHoundAD/BloodHound/releases

	Unzip the folder and double click BloodHound

	Authenticate with the credentials you set up for neo4j

Alternative: Build the BloodHound GUI

	Install NodeJS from https://nodejs.org/en/download/

	Install electron-packager

$ npm install --location=global electron-packager

	Clone the BloodHound GitHub repo:

$ git clone https://github.com/BloodHoundAD/BloodHound

	From the root BloodHound directory, run npm install

$ npm install

Build BloodHound with npm run build:macos:

$ npm run build:macos

 Linux

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: Install BloodHound Community Edition with Docker Compose [https://support.bloodhoundenterprise.io/hc/en-us/articles/17468450058267]

Linux

Install Java

	Install Open JDK 11:

sudo apt-get install openjdk-11-jdk

Install neo4j

Warning

Neo4j 5 suffers from severe performance regression issues. Until further notice, please use latest Neo4j 4.x version

	Add the neo4j repo to your apt sources:

wget -O - https://debian.neo4j.com/neotechnology.gpg.key | sudo apt-key add -
echo 'deb https://debian.neo4j.com stable 4' | sudo tee /etc/apt/sources.list.d/neo4j.list > /dev/null
sudo apt-get update

	Install apt-transport-https with apt

sudo apt-get install apt-transport-https

Note

In Ubuntu server installations, you also need to make sure that the universe repository is enabled. If the universe repository is not present, the Neo4j installation will fail with the error Depends: daemon but it is not installable.
This can be fixed by running the command:

sudo add-apt-repository universe

	Install neo4j community edition using apt:

sudo apt-get install neo4j

	Stop neo4j

sudo systemctl stop neo4j

	Start neo4j as a console application and verify it starts up without errors:

cd /usr/bin
sudo ./neo4j console

Note

It is very common for people to host neo4j on a Linux system, but use the BloodHound
GUI on a different system. neo4j by default only allows local connections. To allow remote
connections, open the neo4j configuration file (vim /etc/neo4j/neo4j.conf) and edit this line:

#dbms.default_listen_address=0.0.0.0

Remove the # character to uncomment the line. Save the file, then start neo4j up again

	Start neo4j up again. You have two options:

Run neo4j as a console application:

cd /usr/bin
./neo4j console

Or use systemctl to start neo4j:

sudo systemctl start neo4j

	Open a web browser and navigate to https://localhost:7474/. You should see the neo4j web console.

	Authenticate to neo4j in the web console with username neo4j, password neo4j. You’ll be prompted
to change this password.

Download the BloodHound GUI

	Download the latest version of the BloodHound GUI from https://github.com/BloodHoundAD/BloodHound/releases

	Unzip the folder, then run BloodHound with the –no-sandbox flag:

./BloodHound --no-sandbox

	Authenticate with the credentials you set up for neo4j

Alternative: Build the BloodHound GUI

	Install NodeJS from https://nodejs.org/en/download/package-manager/#debian-and-ubuntu-based-linux-distributions

	Install electron-packager:

sudo npm install -g electron-packager

	Clone the BloodHound GitHub repo:

git clone https://github.com/BloodHoundAD/Bloodhound

	From the root BloodHound directory, run ‘npm install’

npm install

	Build BloodHound with ‘npm run build:linux’:

npm run build:linux

 SharpHound

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: SharpHound CE [https://support.bloodhoundenterprise.io/hc/en-us/articles/17481151861019]

SharpHound

SharpHound is the official data collector for BloodHound. It is written
in C# and uses native Windows API functions and LDAP namespace functions
to collect data from domain controllers and domain-joined Windows systems.

Download the pre-compiled SharpHound binary and PS1 version at
https://github.com/BloodHoundAD/BloodHound/tree/master/Collectors

You can view the source code for SharpHound and build it from source
by visiting the SharpHound repo at https://github.com/BloodHoundAD/SharpHound

Basic Usage

You can collect plenty of data with SharpHound by simply running the binary
itself with no flags set:

C:\> SharpHound.exe

SharpHound will automatically determine what domain your current user
belongs to, find a domain controller for that domain, and start the
“default” collection method. The default collection method will collect the
following pieces of information from the domain controller:

	Security group memberships

	Domain trusts

	Abusable rights on Active Directory objects

	Group Policy links

	OU tree structure

	Several properties from computer, group and user objects

	SQL admin links

Additionally, SharpHound will attempt to collect the following information
from each domain-joined Windows computer:

	The members of the local administrators, remote desktop, distributed COM,
and remote management groups

	Active sessions, which SharpHound will attempt to correlate to systems
where users are interactively logged on

When finished, SharpHound will create several JSON files and place them into
a zip file. Drag and drop that zip file into the BloodHound GUI and the
interface will take care of merging the data into the database.

The Session Loop Collection Method

BloodHound uses graph theory to find attack paths in Active Directory, and
the more data you have, the more likely you are to find and execute attack
paths successfully. Much of the data you initially collect with SharpHound
will not likely change or require updating over the course of a typical red
team assessment - security group memberships, Active Directory permissions,
and Group Policy links change relatively rarely. That data can be collected
one time, and not again.

User sessions are different for two reasons:

1. Users, especially privileged users, log on and off different systems all
day, every day. How many systems does a typical help desk user or server
admin log into on any given day?

2. The way SharpHound’s data collection works [https://www.youtube.com/watch?v=q86VgM2Tafc] necessitates scanning the
network several times to get more complete session information. Scannning
the network one time for user sessions may give you between 5 and 15% of
the actual sessions on the network.

When you use the path finding function query in BloodHound to find a path
between two nodes and see that there is no path, 9 times out of 10 this is
because BloodHound needs more session data.

SharpHound’s Session Loop collection method makes this very easy:

C:\> SharpHound.exe --CollectionMethods Session --Loop

This will run SharpHound’s session collection method for 2 hours, generating
a zip file after each loop ends. When done, collect all the zip files and
drag and drop them into the BloodHound GUI.

If you would like to specify a different loop time, use the –Loopduration
flag with the HH:MM:SS format to specify how long you want SharpHound to
perform looped session collection for. For example, if you want SharpHound
to perform looped session collection for 3 hours, 9 minutes and 41 seconds:

C:\> SharpHound.exe --CollectionMethods Session --Loop --Loopduration 03:09:41

Running SharpHound from a Non Domain-Joined System

While not an officially supported collection method, and not a colletion
method we recommend you do, it is possible to collect data for a domain
from a system that is not joined to that domain. To do so, carefully follow
these steps:

1. Configure your system DNS server to be the IP address of a domain controller
in the target domain.

2. Spawn a CMD shell as a user in that domain using runas and its /netonly
flag, like so:

C:\> runas /netonly /user:CONTOSO\Jeff.Dimmock cmd.exe

You will be prompted to enter a password. Enter the password and hit enter.

3. A new CMD window will appear. If you type whoami, you will not see the
name of the user you’re impersonating. This is because of the /netonly flag:
the instance of CMD will only authenticate as that user when you authenticate
to other systems over the network, but you are still the same user you were
before when authenticating locally.

	Verify you’ve got valid domain authentiation by using the net binary:

C:\> net view \\contoso\

If you can see the SYSVOL and NETLOGON folders, you’re good.

5. Run SharpHound, using the -d flag to specify the AD domain you want to
collect information from. You can also use any other flags you wish.

C:\> SharpHound.exe -d contoso.local

Building SharpHound from Source

SharpHound is written using C# 9.0 features. To easily compile this project,
use Visual Studio 2019.

If you would like to compile on previous versions of Visual Studio, you can
install the Microsoft.Net.Compilers nuget package.

Building the project will generate an executable as well as a PowerShell
script that encapsulates the executable. All dependencies are rolled into the binary.

SharpHound vs. Antivirus

Many anti-virus engines have signatures for SharpHound. You may even find that
Chrome or other browsers will warn you against downloading SharpHound, saying
the binary is malicious. This isn’t completely unexpected, as BloodHound is primarily
a tool used by penetration testers and red teamers to find attack paths in Active
Directory. While BloodHound has plenty of defensive value, antivirus and browser
vendors continue to flag SharpHound as malicious.

If you are on the red team side, you can employ some av-bypass strategies to
avoid getting caught by AV. One of the best things you can do is stay completely
off-disk when running SharpHound. Many command-and-control tools have in-memory
.net assembly execution capabilities, such as Cobalt Strike’s execute-assembly and
Covenant’s assembly commands. Using these commands will keep SharpHound totally
off-disk when run on your target, which will go a very long way toward evading basic
AV signatures.

If you are on the blue team side, you can use the same AV bypass techniques used by
the red team, or you can request an exception for the SharpHound binary itself or
possibly a folder that you run SharpHound out of. Be aware though that AV excluded
folders and files can commonly be enumerated by low-privilege users running on the
same system, so try to be as specific as possible with your white-list exceptions.

Finally, remember that SharpHound is free and open source. You can build SharpHound
from source and apply your own obfuscation techniques to the source code itself during
that build process. Several resources are available to help get started here:

https://docs.microsoft.com/en-us/visualstudio/ide/dotfuscator/?view=vs-2019

https://github.com/TheWover/donut

https://blog.xpnsec.com/building-modifying-packing-devops/

 All SharpHound Flags, Explained

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: All SharpHound Community Edition Flags, Explained [https://support.bloodhoundenterprise.io/hc/en-us/articles/17481375424795]

All SharpHound Flags, Explained

SharpHound has several optional flags that let you control scan scope,
performance, output, and other behaviors.

Enumeration Options

CollectionMethods

This tells SharpHound what kind of data you want to collect. These are the most
common options you’ll likely use:

	Default: You can specify default collection, or don’t use the CollectionMethods
option and this is what SharpHound will do. Default collection includes Active
Directory security group membership, domain trusts, abusable permissions on AD
objects, OU tree structure, Group Policy links, the most relevant AD object
properties, local groups from domain-joined Windows systems, and user sessions.

	All: Performs all collection methods except for GPOLocalGroup.

	DCOnly: Collects data ONLY from the domain controller, will not touch other
domain-joined Windows systems. Collects AD security group memberships, domain
trusts, abusable permissions on AD objects, OU tree structure, Group Policy
links, the most relevant AD object properties, and will attempt to correlate
Group Policy-enforced local groups to affected computers.

	ComputerOnly: Collects user sessions (Session) and local groups (LocalGroup)
from domain-joined Windows systems. Will NOT collect the data collected with the DCOnly
collection method.

	Session: Just does user session collection. You will likely couple this with
the –Loop option. See SharpHound examples below for more info on that.

	LoggedOn: Does session collection using the privileged collection method. Use
this if you are running as a user with local admin rights on lots of systems
for the best user session data.

Here are the less common CollectionMethods and what they do:

	Group: Just collect security group memberships from Active Directory

	ACL: Just collect abusable permissions on objects in Active Directory

	GPOLocalGroup: Just attempt GPO to computer correlation to determine members
of the relevant local groups on each computer in the domain. Doesn’t actually
touch domain-joined systems, just gets info from domain controllers

	Trusts: Just collect domain trusts

	Container: Just collect the OU tree structure and Group Policy links

	LocalGroup: Just collect the members of all interesting local groups on
each domain-joined computer. Equivalent for LocalAdmin + RDP + DCOM +
PSRemote

	LocalAdmin: Just collect the members of the local Administrators group on
each domain-joined computer

	RDP: Just collect the members of the Remote Desktop Users group on each
domain-joined computer

	DCOM: Just collect the members of the Distributed COM Users group on each
domain-joined computer

	PSRemote: Just collect the members of the Remote Management group on each
domain-joined computer

	ObjectProps - Performs Object Properties collection for properties
such as LastLogon or PwdLastSet

Table to demonstrate the differences

[image: SharpHound Cheat Sheet]
Image credit: https://twitter.com/SadProcessor

Domain

Tell SharpHound which Active Directory domain you want to gather information from.
Importantly, you must be able to resolve DNS in that domain for SharpHound to work
correctly. For example, to collect data from the Contoso.local domain:

C:\> SharpHound.exe -d contoso.local

Stealth

Perform “stealth” data collection. This switch modifies your data collection
method. For example, if you want to perform user session collection, but only
touch systems that are the most likely to have user session data:

C:\> SharpHound.exe --CollectionMethods Session --Stealth

ComputerFile

Load a list of computer names or IP addresses for SharpHound to collect information
from. The file should be line-separated.

SearchBase

Base DistinguishedName to start search at. Use this to limit your search.
Equivalent to the old –OU option

C:\> SharpHound.exe --SearchBase "OU=New York,DC=Contoso,DC=Local"

LDAPFilter

Instruct SharpHound to only collect information from principals that match a given
LDAP filter. For example, to only gather abusable ACEs from objects in a certain
OU, do this:

C:\> SharpHound.exe --LDAPFilter "(CN=*,OU=New York,DC=Contoso,DC=Local)"

ExcludeDomainControllers

–ExcludeDCs will instruct SharpHound to not touch domain controllers. By not touching
domain controllers, you will not be able to collect anything specified in the
DCOnly collection method, but you will also likely avoid detection by Microsoft
ATA.

C:\> SharpHound.exe -d contoso.local --ExcludeDCs

RealDNSName

In some networks, DNS is not controlled by Active Directory, or is otherwise
not syncrhonized to Active Directory. This causes issues when a computer joined
to AD has an AD FQDN of COMPUTER.CONTOSO.LOCAL, but also has a DNS FQDN of, for
example, COMPUTER.COMPANY.COM. You can help SharpHound find systems in DNS by
providing the latter DNS suffix, like this:

C:\> SharpHound.exe --RealDNSName COMPANY.COM

OverrideUserName

When running SharpHound from a runas /netonly-spawned command shell, you may
need to let SharpHound know what username you are authenticating to other systems
as.

CollectAllProperties

Collect every LDAP property where the value is a string from each enumerated
Active Directory object.

WindowsOnly

Limit computer collection to systems with an operating system that matches Windows

Output Options

OutputDirectory

By default, SharpHound will output zipped JSON files to the directory SharpHound
was launched from. You can specify a different folder for SharpHound to write
files to. For example, to instruct SharpHound to write output to C:temp:

C:\> SharpHound.exe --OutputDirectory C:\temp\

OutputPrefix

Add a prefix to your JSON and ZIP files. For example, to have the JSON and ZIP
file names start with “Financial Audit”:

C:\> SharpHound.exe --OutputPrefix "Financial Audit"

NoZip

Instruct SharpHound to not zip the JSON files when collection finishes.

EncryptZip

Add a randomly generated password to the zip file.

ZipFileName

Specify the name of the zip file

RandomizeFilenames

Randomize output file names

PrettyJson

Outputs JSON with indentation on multiple lines to improve readability.
Tradeoff is increased file size.

DumpComputerStatus

Dumps error codes from connecting to computers

Loop Options

Loop

Instruct SharpHound to loop computer-based collection methods. For example,
attempt to collect local group memberships across all systems in a loop:

C:\> SharpHound.exe --CollectionMethods LocalGroup --Loop

LoopDuration

By default, SharpHound will loop for 2 hours. You can specify whatever duration
you like using the HH:MM:SS format. For example, to loop session collection for
12 hours, 30 minutes and 12 seconds:

C:\> SharpHound.exe --CollectionMethods Session --Loop --LoopDuration 12:30:12

LoopInterval

How long to pause for between loops, also given in HH:MM:SS format. For example,
to loop session collection for 12 hours, 30 minutes and 12 seconds, with a 15
minute interval between loops:

C:\> SharpHound.exe --CollectionMethods Session --Loop --Loopduration 12:30:12 --LoopInterval 00:15:00

Connection Options

DomainController

Target a specific domain controller by its IP address or name for LDAP collection

LdapPort

Specify an alternate port for LDAP if necessary

SecureLdap

Connect to the domain controller using LDAPS (secure LDAP) vs plain text LDAP.
This will use port 636 instead of 389.

LdapUsername

Use with the LdapPassword parameter to provide alternate credentials to the domain
controller when performing LDAP collection.

LdapPassword

Use with the LdapUsername parameter to provide alternate credentials to the domain
controller when performing LDAP collection.

DisableKerberosSigning

Disables LDAP encryption. Not recommended.

Performance Options

PortScanTimeout

When SharpHound is scanning a remote system to collect user sessions and local
group memberships, it first checks to see if port 445 is open on that system.
This helps speed up SharpHound collection by not attempting unnecessary function calls
when systems aren’t even online. By default, SharpHound will wait 2000 milliseconds
(2 seconds) to get a response when scanning 445 on the remote system. You can decrease
this if you’re on a fast LAN, or increase it if you need to. For example, to tell
SharpHound to wait just 1000 milliseconds (1 second) before skipping to the next host:

C:\> SharpHound.exe --PortScanTimeout 1000

SkipPortScan

Instruct SharpHound to not perform the port 445 check before attempting to enumerate
information from a remote host. This can result in significantly slower collection
periods.

Throttle

Adds a delay after each request to a computer. Value is in milliseconds (Default: 0)

Jitter

Adds a percentage jitter to throttle. (Default: 0)

Cache Options

CacheFileName

SharpHound will create a local cache file to dramatically speed up data collection. It
does this primarily by storing a map of principal names to SIDs and IPs to computer names.
By default, SharpHound will auto-generate a name for the file, but you can use this flag
to control what that name will be. For example, to name the cache file Accounting.bin:

C:\> SharpHound.exe --CacheFileName Accounting.bin

NoSaveCache

This will instruct SharpHound to NOT create the local cache file. Future enumeration
will be slower than they would be with a cache file, but this will prevent SharpHound
from putting the cache file on disk, which can help with AV and EDR evasion.

InvalidateCache

Invalidate the cache file and build a new cache

Deprecated Flags

The following flags have been removed from SharpHound:

SearchForest

This flag would instruct SharpHound to automatically collect data from all domains in
your current forest. To collect data from other domains in your forest, use the nltest
binary with its /domain_trusts flag to enumerate all domains in your current forest:

C:\> nltest /domain_trusts

Then specify each domain one-by-one with the –domain flag

 AzureHound

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: AzureHound Community Edition [https://support.bloodhoundenterprise.io/hc/en-us/articles/17481394564251]

AzureHound

AzureHound is a Go binary that collects data from AzureAD and AzureRM via the MS Graph
and Azure REST APIs. It does not use any external dependencies and will run on any
operating system.

Building AzureHound From Source

You can build AzureHound from source by cloning this repository:

Then, cd into the directory you just cloned and type:

go build .

This will build AzureHound and you will have a new binary called azurehound
in this directory.

Collecting Data with AzureHound

AzureHound supports several authentication flows for collecting information from Azure.
You can supply a username/password combo, a JWT, a refresh token, a service principal
secret, or service principal certificate. You can combine these various authentication
methods with several collection scoping options.

For example, to authenticate with a username/password and list all groups in a tenant:

./azurehound -u "MattNelson@contoso.onmicrosoft.com" -p "MyVeryStrongPassword" list groups --tenant "contoso.onmicrosoft.com"

AzureHound will authenticate as that user and print all groups in the “Contoso” tenant.

Or, you may want to supply a JWT and collect all users from the tenant instead. You do not
need to supply a username or password when supplying a JWT:

./azurehound -j "ey..." list users --tenant "contoso.onmicrosoft.com"

When collecting data for import into BloodHound, you must use the -o switch to instruct
AzureHound to output to a file. For example, to list all available data in both AzureAD
and AzureRM, you can do this:

./azurehound -u "MattNelson@contoso.onmicrosoft.com" -p "MyVeryStrongPassword" list groups --tenant "contoso.onmicrosoft.com" -o output.json

Dealing with Multi-Factor Auth and Conditional Access Policies

If a user has MFA or CAP restrictions applied to them, you will not be able to authenticate
with just a username and password with AzureHound. In this situation, you can acquire a
refresh token for the user and supply the refresh token to AzureHound.

The most straight-forward way to accomplish this is to use the device code flow. In this
example I will show you how to perform this flow using PowerShell, but this example can
be very easiliy ported to any language, as we are simply making calls to Azure APIs.

Open a PowerShell window on any system and paste the following:

$body = @{
 "client_id" = "1950a258-227b-4e31-a9cf-717495945fc2"
 "resource" = "https://graph.microsoft.com"
}
$UserAgent = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36"
$Headers=@{}
$Headers["User-Agent"] = $UserAgent
$authResponse = Invoke-RestMethod `
 -UseBasicParsing `
 -Method Post `
 -Uri "https://login.microsoftonline.com/common/oauth2/devicecode?api-version=1.0" `
 -Headers $Headers `
 -Body $body
$authResponse

The output will contain a user_code and device_code. Now, open a browser where your AzureAD
user either already logged on or can log on to Azure. In this browser, navigate to
https://microsoft.com/devicelogin

Enter the code you generated from the above PowerShell script. Follow the steps in the browser
to authenticate as the AzureAD user and approve the device code flow request. When done,
the browser page should display a message similar to “You have signed in to the Microsoft Azure
PowerShell application on your device. You may now close this window.”

Now go back to your original PowerShell window and paste this:

$body=@{
 "client_id" = "1950a258-227b-4e31-a9cf-717495945fc2"
 "grant_type" = "urn:ietf:params:oauth:grant-type:device_code"
 "code" = $authResponse.device_code
}
$Tokens = Invoke-RestMethod `
 -UseBasicParsing `
 -Method Post `
 -Uri "https://login.microsoftonline.com/Common/oauth2/token?api-version=1.0" `
 -Headers $Headers `
 -Body $body
$Tokens

The output will include several tokens including a refresh_token. It will start with
characters similar to “0.ARwA6Wg…”. Now you are ready to run AzureHound! Take the refresh
token and supply it to AzureHound using the -r switch:

./azurehound -r "0.ARwA6Wg..." list --tenant "contoso.onmicrosoft.com" -o output.json

This will attempt to list all possible data from that particular tenant, but you can ALSO
use that same refresh token to target any other tenant your user has access to!

 All AzureHound Flags, Explained

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: All AzureHound Community Edition Flags, Explained [https://support.bloodhoundenterprise.io/hc/en-us/articles/17481642843803]

All AzureHound Flags, Explained

AzureHound has several optional flags that let you control scan scope,
performance, output, and other behaviors.

Enumeration Commands and Options

list

The “list” command tells AzureHound to read all possible information from AzureAD
and AzureRM. You can optionally limit the scope of what data AzureHound will collect
by providing a scope option after the “list” command:

These are the most common options you’ll likely use:

	az-ad Collect all information available at the AzureAD tenant level. In most
tenants, all users have the ability to read all this information by default.

	az-rm Collect all information available at the AzureRM subscription level. Users
do not by default have read access to any of this information.

You can also scope collection to particular object types:

	apps Collects AzureAD application registration objects.

	devices Collects AzureAD devices regardless of join type.

	groups Collects AzureAD security-enabled groups, both role eligible and non role eligible.

	key-vaults Collects AzureRM key vaults.

	management-groups Collets AzureRM management group objects

	resource-groups Collects AzureRM resource group objects

	roles Collects AzureAD admin role objects

	service-principals Collects AzureAD service principals

	subscriptions Collets AzureRM subscriptions

	tenants Collets AzureAD tenant objects

	users Collects AzureAD users, including any guest users in the target tenant.

	virtual-machines Collects AzureRM virtual machines

You can even further scope collection to particular abuses against each object type.
Here are a few examples:

	app-owners Collects explicitly set owners of AzureAD application registration objects

	management-group-user-access-admins Collects any principal with the User Access Admin role against any management group

	virtual-machine-avere-contributors Collects any principal with the Avere Contributor role assignment against any virtual machine

Authentication Flags

AzureHound supports several authentication options. You can control how
AzureHound authenticates by using command line flags or the configuration file. Some
flags should always be used together and are presented here in the context of
their authentication use-cases:

Authenticating with Username and Password

	-u or --username - The user principal name of the AzureAD user you wish to authenticate
as. UPN format is “username@domain.com”

	-p or --password - The clear-text password of the AzureAD user.

Example:

./azurehound -u "MattNelson@contoso.onmicrosoft.com" -p "MyVerySecurePassword123" --tenant "contoso.onmicrosoft.com" list

You can also skip proving the password on the command line, and AzureHound will instead
interactively prompt you for the password.

Authenticating with Service Principal Secret

	-a or --app - The Application Id that the Azure app registration
portal assigned when the app was registered.

	-s or --secret - The Application Secret that was generated for the
app in the app registration portal.

Example:

./azurehound -a "6b5adee8-0d36-45b6-b393-8f29ae8a8cc8" -s "<secret>" --tenant "contoso.onmicrosoft.com" list

Authenticating with a JWT

	-j or --jwt - An MS Graph or AzureRM scoped JWT. These JWTs last a maximum
of 90 minutes, so you may need to get a new JWT to enumerate data with AzureHound later.

Example:

./azurehound -j "ey..." --tenant "contoso.onmicrosoft.com" list az-ad

Authenticating with a Refresh Token

	-r or --refresh-token - A refresh token. AzureHound will automatically
exchange this for an appropriately scoped JWT when accessing the MS Graph
and AzureRM APIs.

Example:

./azurehound -r "0.ARwA6Wg..." --tenant "contoso.onmicrosoft.com" list

Additional Scoping and Output Flags

	-t or --tenant - The directory tenant that you want to request permission from. This can be in GUID or friendly name format.

	-b - Filter by one or more subscription ID. AzureHound will automatically dedupe this list for you.

	-m - Filter by one or more management group ID. AzureHound will automatically dedupe all descendent management groups and subscriptions for you.

	-o or --output - Instructs AzureHound to write its output to a specified file name.

	--log-file - Output logs to this file

	-v or --verbosity - AzureHound verbosity level (defaults to 0) [Min: -1, Max: 2]

 BloodHound.py

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound.py here: BloodHound.py [https://github.com/dirkjanm/BloodHound.py]

BloodHound.py

BloodHound.py, written by Dirk-jan Mollema [https://twitter.com/_dirkjan], allows you to collect
data for BloodHound from a Linux system, OSX system, or Windows
system that has Python installed on it.

You can get BloodHound.py at https://github.com/dirkjanm/BloodHound.py

Note

BloodHound.py is built and maintained by Dirk-Jan, it is not
officially supported by the BloodHound development team

 The BloodHound GUI

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: BloodHound Support [https://support.bloodhoundenterprise.io/hc/en-us]

The BloodHound GUI

The BloodHound GUI is where the vast majority of your data
analysis will happen. Our primary objectives in designing the
BloodHound GUI are intuitive design and operational focus. In
other words, we want you to get access to the data you need
as easily and quickly as possible.

Authentication

When you open the BloodHound GUI for the first time, you will
see an authentication prompt:

[image: BloodHound logon screen]

Note

Want to follow along? Connect to the example hosted database:

	DBurl: bolt://206.189.85.93:7687

	DBusername: neo4j

	DBpassword: BloodHound

The “Database URL” is the IP address and port where your neo4j
database is running, and should be formatted as bolt://ip:7687/

The DB Username is the username for the neo4j database.
The default username for a neo4j database is neo4j.

The DB Password is the password for the neo4j database. The
default password for a neo4j database is neo4j. The password
for the example database is BloodHound.

Click “Login”, and the GUI will attempt to authenticate to neo4j
with the information you provided.

You can optionally click “Save Password” to automatically log in
next time with the same info.

After successful authentication, the BloodHound GUI will do three
things:

	First, the GUI will perform a cypher query to ensure the graph
schema has the appropriate indices and constraints. These operations
prevent duplicate node creation and greatly speed up node lookup

	Second, the GUI will collect stats about the database and display
those stats in the “Database Info” tab.

	Finally, the GUI will query for all users that belong to any Domain
Admins group, then display those users and show how they belong to
the Domain Admins group.

Upon successful logon, BloodHound will draw any group(s) with the
“Domain Admins” in their name, and show you the effective users that
belong to the group(s):

[image: BloodHound displaying the members of the Domain Admins group]

GUI Elements

Graph Drawing Area

As much of the screen real estate as possible is dedicated to the graph
rendering area - where BloodHound displays nodes and the relationships
between them. You can move nodes around, highlight paths by mousing over
a node involved in a path, and click on nodes to see more information
about those nodes. You can also right click nodes and perform several
actions against those nodes:

[image: Right click menu on a group node]

	Set as Starting Node: Set this node as the starting point in the
pathfinding tool. Click this and you will see this node’s name in the
search bar, then you can select another node to target after clicking
the pathfinding button.

	Set as Ending Node: Set this node as the target node in the pathfinding
tool.

	Shortest Paths to Here: This will perform a query to find all shortest
paths from any arbitrary node in the database to this node. This may cause
a very long query time in neo4j and an even longer render time in the
BloodHound GUI.

	Shortest Paths to Here from Owned: Find attack paths to this node from
any node you have marked as owned.

	Edit Node: This brings up the node editing modal, where you can edit
current properties on the node or even add your own custom properties to
the node.

	Mark Group as Owned: This will internally set the node as owned in the
neo4j database, which you can then use in conjunction with other queries
such as “Shortest paths to here from Owned”

	Mark/Unmark Group as High Value: Some nodes are marked as “high value”
by default, such as the domain admins group and enterprise admin group.
This can then be used with other queries such as “shortest paths to high
value assets”

	Delete Node: Deletes the node from the neo4j database

You can also right click edges, then click “help” to see information about
any particular attack primitive:

[image: Right click edge and get help]
Finally, there are four keyboard shortcuts when the graph rendering area has
focus:

	CTRL: Pressing CTRL will cycle through the three different node label
display settings - default, always show, always hide.

	Spacebar: Pressing spacebar will bring up the spotlight window, which
lists all nodes that are currently drawn. Click an item in the list and the
GUI will zoom into and briefly highlight that node.

	Backspace: Pressing backspace will go back to the previous graph result
rendering. This is the same functionality as clicking the Back button in
the search bar.

	S: Pressing the letter s will toggle the expansion or collapse of
the information panel below the search bar. This is the same functionality
as clicking the More Info button in the search bar.

Search Bar

In the top left of the GUI is the search bar. Start typing the name of a node,
and the GUI will automatically recommend nodes that match what you’ve typed so far.
Click one of the suggestions, and the GUI will render that node:

[image: Search for nodes using the search bar]
You can also constrain your search to particular node types by prepending your
search with the appropriate node label. For example, you can search for just
groups with the word “Admin” in them with this search:

group:Admin

You can prepend your search with the following node types:

Active Directory

	Group

	Domain

	Computer

	User

	OU

	GPO

	Container

Azure

	AZApp

	AZRole

	AZDevice

	AZGroup

	AZKeyVault

	AZManagementGroup

	AZResourceGroup

	AZServicePrincipal

	AZSubscription

	AZTenant

	AZUser

	AZVM

Pathfinding

One of the most powerful features of BloodHound is its ability to find attack
paths between two given nodes, if an attack path exists. Within the search bar
is the “pathfinding” button, which brings down a second text box where you can
type in the name of a node you want to target.

For example, if we wanted to find a path from the “Domain Users” group to the
“Domain Admins” group, we can use the path finding feature like this:

[image: Search for an attack path]
Depending on your opsec requirements or other factors, you may want to find
attack paths that do not include particular attack primitives, such as AD object
manipulation. Click the filter icon to bring up the edge filtering pane, and select
or de-select the particular edges or class of edges as needed:

[image: Edge filtering pane]

Raw Query Bar

With query debug mode enabled, any time the BloodHound GUI performs a cypher query
where the results are shown in the graph rendering area, the cypher query itself
will appear here. This can be helpful for learning cypher:

[image: Raw query bar]
Additionally, you can execute your own cypher queries using the raw query bar.
Your cypher query must return either paths or nodes, the BloodHound GUI cannot
render list output. For example, to return all “user” type nodes in the database:

[image: Run a raw cypher query]

Upper Right Menu

In the upper right are several menu items for you to interact with. From the top
going down:

	Refresh: Re-run the last query and display the results

	Export Graph: Export the currently rendered graph in JSON format

	Import Graph: Select a JSON formatted graph for the GUI to render

	Upload Data: Select your SharpHound or AzureHound data to upload to neo4j

	Change Layout Type: Switch between hierarchial or force directed layout

	Settings: Configure node and edge display settings, as well as query debug mode,
low detail mode, and dark mode here.

	About: Displays author and version information

 Nodes

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: About BloodHound Nodes [https://support.bloodhoundenterprise.io/hc/en-us/articles/17605671475867]

Nodes

Nodes represent principals and other objects in Active Directory.
BloodHound stores certain information about each node on the node
itself in the neo4j database, and the GUI automatically performs
several queries to gather insights about the node, such as how
privileged the node is, or which GPOs apply to the node, etc. Simply
click the node in the BloodHound GUI, and the “Node Info” tab will
populate with all that information for the node.

Users

At the top of the node info tab you will see the following info:

	USERNAME@DOMAIN.COM: the UPN formatted name of the user, where
USERNAME is the SAM Account Name, and DOMAIN.COM is the fully
qualified domain name of the domain the user is in.

	Sessions: The count of computers this user has been observed
logging onto. Click this number to visually see the connections
between those computers and this user

	Sibling Objects in the Same OU: the number of other AD users, groups,
and computers that belong to the same OU as this user. This can be
very helpful when trying to figure out the lay of the land for an
environment

	Reachable High Value Targets: The count of how many high value
targets this user has an attack path to. A high value target is by
default any computer or user that belongs to the domain admins,
domain controllers, and several other high privilege Active Directory
groups. Click this number to see the shortest attack paths from this user
to those high value targets.

	Effective Inbound GPOs: the count of GPOs that apply to this user.
Click the number to see the GPOs and how they apply to this user.

	See user within Domain/OU Tree: click this to see where the user
is placed in the OU tree. This can give you insights about the
geographic location of the user as well as organizational placement
of the actual person.

Node Properties

	Display name: The Active Directory display name for the user

	Object ID: The user’s SID. In neo4j this is stored as the user’s
objectid to uniquely identify the node

	Password Last Changed: The human-readable date for when the user’s
password last changed. This is stored internally in Unix epoch format

	Last Logon: The last time the domain controller you got this data from
handled a logon request for the user

	Last Logon (Replicated): The last time any domain controller handled
a logon for this user

	Enabled: Whether the user object is enabled in Active Directory. Fun
fact: if you control a disabled user object, you can re-enable that
user object.

	AdminCount: Whether the user object in Active Directory currently,
or possibly ever has belonged to a certain set of highly privileged
groups. This property is related to the AdminSDHolder object and the
SDProp process. Read about that here: https://adsecurity.org/?p=1906

	Compromised: Whether the user is marked as Owned. You can mark any
user in the BloodHound GUI as Owned by right-clicking it and clicking
“Mark User as Owned”.

	Password Never Expires: Whether the UAC flag is set for the user in
Active Directory to not require the user to update their password

	Cannot Be Delegated: Whether the UAC flag is set on the user in
Active Directory to disallow kerberos delegation for this user. If
this is “True”, then the user cannot be abused as part of a kerberos
delegation attack

	ASREP Roastable: Whether the user can be ASREP roasted. For more info
about that attack, see https://github.com/GhostPack/Rubeus#asreproast

Extra Properties

This section displays some other information about the node, plus all other
non-default, string-type property values from Active Directory if you used
the –CollectAllProperties flag. The default properties you’ll see here
include:

	distinguishedname: The distinguished name (DN) of the user

	domain: The FQDN of the domain the user is in

	name: The UPN-formatted name of the user

	passwordnotreqd: Whether the UAC flag is set on the user object to
not require the user to have a password. Note that this does not
necessarily mean the user does not have a password, just that the user
is allowed to not have one

	userpassword: Under certain conditions, you may have a clear-text
password show up in this property. Most commonly, we have seen that some
sort of Unix/Linux-based application will write a password to this property
for an AD account the application is running as. This is possibly the
current AD password for the user, but is not guaranteed to be the current
password.

	unconstraineddelegation: Whether the user is allowed to perform
unconstrained kerberos delegation. See more info about that here:
https://blog.harmj0y.net/redteaming/another-word-on-delegation/

Group Membership

This section displays stats about Active Directory security grops the user
belongs to:

	First Degree Group Memberships: AD security groups the user is
directly added to. If you typed net user david.mcguire /domain, for
example, these are the groups you’d see this user belonging to.

	Unrolled Group Membership: Groups can be added to groups, and those
group nestings can grant admin rights, control of AD objects, and other
privileges to many more users than intended. These are the groups that
this user effectively belongs to, because the groups the user explicitly
belongs to have been added to those groups.

	Foreign Group Membership: Groups in other Active Directory domains
this user belongs to

Local Admin Rights

	First Degree Local Admin: The number of computers that this user
itself has been added to the local administrators group on. If you were
to type net localgroup administrators on those systems, you would see
this user in the list

	Group Delegation Local Admin Rights: AD security groups can be added
to local administrator groups. This number shows the number of computers
this user has local admin rights on through security group delegation,
regardless of how deep those group nestings may go

	Derivative Local Admin Rights: This query does not run by default
because it’s a very expensive query for neo4j to run. If you press the play
button here, neo4j will run the query and return the number of computers
this user has “derivative” local admin rights on. For more info about
this concept, see http://www.sixdub.net/?p=591

Execution Privileges

	First Degree RDP Privileges: The number of computers where this user
has been added to the local Remote Desktop Users group.

	Group Delegated RDP Privileges: The number of computers where this user
has remote desktop logon rights via security group delegation

	First Degree DCOM Privileges: The number of computers where this user
has been added to the local Distributed COM Users group

	Group Delegated DCOM Privileges: The number of computers where this
user has group delegated DCOM rights

	SQL Admin Rights: The number of computers where this user is very
likely granted SA privileges on an MSSQL instance. This number is inferred
by the number of computers listed on the user’s serviceprincipalnames
attribute where an MSSQL instance is referenced

	Constrained Delegation Privileges: The number of computers that trust
this user to perform constrained delegation. This number is inferred by
insepecting the msDS-AllowedToDelegateTo property on the user object in
Active Directory and getting a count for how many computers are listed
in that attribute

Outbound Object Control

	First Degree Object Control: The number of objects in AD where this
user is listed as the IdentityReference on an abusable ACE. In other words,
the number of objects in Active Directory that this user can take control
of, without relying on security group delegation

	Group Delegated Object Control: The number of objects in AD where this
user has control via security group delegation, regardless of how deep those
group nestings may go

	Transitive Object Control: The number of objects this user can gain control
of by performing ACL-only based attacks in Active Directory. In other words,
the maximum number of objects the user can gain control of without needing
to pivot to any other system in the network, just by manipulating objects
in the directory

Inbound Object Control

	Explicit Object Controllers: The number of principals that are listed
as the IdentityReference on an abusable ACE on this user’s DACL. In other
words, the number of users, groups, or computers that directly have control
of this user

	Unrolled Object Controllers: The actual number of principals that have
control of this object through security group delegation. This number can
sometimes be wildly higher than the previous number

	Transitive Object Controllers: The number of objects in AD that can achieve
control of this object through ACL-based attacks

Groups

At the top of the node info tab you will see the following info:

	GROUPNAME@DOMAIN.COM: The UPN formatted name of the security group, where
GROUPNAME is the group’s SAM Account Name, and DOMAIN.COM is the fully qualified
name of the domain the group is in

	Sessions: The number of computers that users belonging to this group have
been seen logging onto. This will include users that belong to this group through
any number of nested memberships. Very useful for targetting users that belong
to a particular security group

	Reachable High Value Targets: The count of how many high value targets this
group (and therefore the users belonging to this group) has an attack path to.
A high value target is by default any computer or user that belongs to the domain
admins, domain controllers, and several other high privilege Active Directory
groups. Click this number to see the shortest attack paths from this user to
those high value targets.

Node Properties

	Object ID: The SID of the group. The group’s SID is stored internally as its
objectid

	Description: The contents of the description field for the group in Active
Directory.

	Admin Count: Whether the group object in Active Directory currently, or
possibly ever has belonged to a certain set of highly privileged groups. This
property is related to the AdminSDHolder object and the SDProp process. Read
about that here: https://adsecurity.org/?p=2053

Extra Properties

This section displays some other information about the node, plus all other
non-default, string-type property values from Active Directory if you used the
–CollectAllProperties flag. The default properties you’ll see here include:

	distinguishedname: The distinguished name (DN) of the group

	domain: The FQDN of the domain the group belongs to

	name: The UPN formatted name of the group

Group Members

	Direct Members: The number of principals that have been directly added to
this group. If you typed net group GROUPNAME /domain, these are the
principals you would see in that output

	Unrolled Members: The actual number of users that effectively belong to
this group, no matter how many layers of nested group membership that goes

	Foreign Members: The number of users from other domains that belong to this
group

Group Membership

	First Degree Group Membership: The number of groups this group has been
added to

	Unrolled Member Of: The number of groups this group belongs to through
nested group memberships

	Foreign Group Membership: Groups in other domains this group has been added
to

Local Admin Rights

	First Degree Local Admin: The number of computers this group itself has been
added to the local administrators group on

	Group Delegated Local Admin Rights: The number of computers this group (and
the members of this group) has admin rights on via nested group memberships

	Derivative Local Admin Rights: This query does not run by default because
it’s a very expensive query for neo4j to run. If you press the play button here,
neo4j will run the query and return the number of computers this group has
“derivative” local admin rights on. For more info about this concept, see
http://www.sixdub.net/?p=591

Execution Privileges

	First Degree RDP Privileges: The number of computers where this group has
been added to the local Remote Desktop Users group.

	Group Delegated RDP Privileges: The number of computers where this group has
remote desktop logon rights via security group delegation

	First Degree DCOM Privileges: The number of computers where this group has
been added to the local Distributed COM Users group

	Group Delegated DCOM Privileges: The number of computers where this group has
group delegated DCOM rights

Outbound Object Control

	First Degree Object Control: The number of objects in AD where this group is
listed as the IdentityReference on an abusable ACE. In other words, the number of
objects in Active Directory that this group can take control of, without relying
on security group delegation

	Group Delegated Object Control: The number of objects in AD where this group
has control via security group delegation, regardless of how deep those group
nestings may go

	Transitive Object Control: The number of objects this group can gain control
of by performing ACL-only based attacks in Active Directory. In other words, the
maximum number of objects the group can gain control of without needing to pivot
to any other system in the network, just by manipulating objects in the directory

Inbound Object Control

	Explicit Object Controllers: The number of principals that are listed as the
IdentityReference on an abusable ACE on this group’s DACL. In other words, the
number of users, groups, or computers that directly have control of this group

	Unrolled Object Controllers: The actual number of principals that have control
of this object through security group delegation. This number can sometimes be
wildly higher than the previous number

	Transitive Object Controllers: The number of objects in AD that can achieve
control of this object through ACL-based attacks

Computers

At the top of the node info tab you will see the following info:

	COMPUTERNAME.DOMAIN.COM: The fully qualified name of the computer

	Sessions: The total number of users that have been observed logging onto this
computer

	Reachable High Value Targets: The count of how many high value targets this
computer has an attack path to. A high value target is by default any computer or
user that belongs to the domain admins, domain controllers, and several other high
privilege Active Directory groups. Click this number to see the shortest attack
paths from this computer to those high value targets

	Sibling Objects in the Same OU: the number of other AD users, groups, and
computers that belong to the same OU as this computer. This can be very helpful
when trying to figure out the lay of the land for an environment

	Effective Inbound GPOs: the count of GPOs that apply to this computer. Click
the number to see the GPOs and how they apply to this computer

	See Computer within Domain/OU Tree: click this to see where the computer is
placed in the OU tree. This can give you insights about the geographic location of
the computer as well as the purpose and function of the computer

Node Properties

	Object ID: The SID of the computer. We store this in neo4j as the computer’s
objectid to uniquely identify the node

	OS: The operating system running on the computer, according to the corresponding
property on the computer object in Active Directory

	Enabled: Whether the computer object is enabled

	Allows Unconstrained Delegation: Whether the computer is trusted to perform
unconstrained delegation. By default, all domain controllers are trusted for this
style of kerberos delegation. For information about the abuse related to this
configuration, see https://blog.harmj0y.net/redteaming/another-word-on-delegation/

	Compromised: Whether the computer is marked as Owned. You can mark any computer in
the BloodHound GUI as Owned by right-clicking it and clicking “Mark Computer as Owned”.

	LAPS Enabled: Whether LAPS is running on the computer. This is determined by
checking whether the associated MS LAPS properties are populated on the computer
object

	Password Last Changed: The human readable time for when the computer account’s
password last changed in Active Directory

	Last Logon (Replicated): The last time any domain controller handled a logon
for this computer. In other words, the last time the computer authenticated to the
domain

Extra Properties

This section displays some other information about the node, plus all other non-default,
string-type property values from Active Directory if you used the –CollectAllProperties
flag. The default properties you’ll see here include:

	distinguishedname: The distinguished name (DN) of the computer

	domain: The fully qualified name of the domain the computer is in

	name: The FQDN of the computer

	serviceprincipalnames: The list of SPNs on the computer. Very useful for determining
any non-default services that may be running on the computer, such as MSSQL

Local Admins

	Explicit Admins: The count of principals that have been directly added to the local
administrators group on the computer. If you typed net localgroup administrators on
the computer, these are the principals you would see listed in that output

	Unrolled Admins: The real number of principals that have local admin rights on this
computer via nested group memberships

	Foreign Admins: The number of users from other domains that have admin rights on
this computer

	Derivative Local Admins: The count of users that can execute an attack path relying
on admin rights and token theft to compromise this system. For more information about
this attack, see http://www.sixdub.net/?p=591

Inbound Execution Privileges

	First Degree Remote Desktop Users: The number of principals that have been granted
RDP rights to this system by being added to the local Remote Desktop Users group

	Group Delegated Remote Desktop Users: The real number of users that have RDP access
to this system through nested group memberships

	First Degree Distributed COM Users: The number of principals added to the local
Distributed COM Users group

	Group Delegated Distributed COM Users: The number of users with DCOM access to this
system through nested group memberships

	SQL Admins: The number of users that have SA privileges on an MSSQL instance running
on this system. This is determined by inspecting the serviceprincipalname attribute on
user objects in AD

Group Membership

	First Degree Group Memberships: AD security groups the computer is directly added to.

	Unrolled Group Membership: The number of groups this computer belongs to through
nested group memberships

	Foreign Group Membership: Groups in other Active Directory domains this computer belongs
to

Local Admin Rights

	First Degree Local Admin: The number of computers that this computer itself has been
added to the local administrators group on.

	Group Delegation Local Admin Rights: This number shows the number of computers this
computer has local admin rights on through security group delegation, regardless of how
deep those group nestings may go

	Derivative Local Admin Rights: This query does not run by default because it’s a very
expensive query for neo4j to run. If you press the play button here, neo4j will run the
query and return the number of computers this computer has “derivative” local admin rights
on. For more info about this concept, see http://www.sixdub.net/?p=591

Outbound Execution Privileges

	First Degree RDP Privileges: The number of computers where this computer has been
added to the local Remote Desktop Users group.

	Group Delegated RDP Privileges: The number of computers where this computer has remote
desktop logon rights via security group delegation

	First Degree DCOM Privileges: The number of computers where this computer has been added
to the local Distributed COM Users group

	Group Delegated DCOM Privileges: The number of computers where this computer has group
delegated DCOM rights

	Constrained Delegation Privileges: The number of computers that trust this computer to
perform constrained delegation. This number is inferred by insepecting the
msDS-AllowedToDelegateTo property on the computer objects in Active Directory and getting a
count for how many computers are listed in that attribute

Inbound Object Control

	Explicit Object Controllers: The number of principals that are listed as the
IdentityReference on an abusable ACE on this computer’s DACL. In other words, the number of
users, groups, or computers that directly have control of this computer

	Unrolled Object Controllers: The actual number of principals that have control of this
object through security group delegation. This number can sometimes be wildly higher than
the previous number

	Transitive Object Controllers: The number of objects in AD that can achieve control of
this object through ACL-based attacks

Outbound Object Control

	First Degree Object Control: The number of objects in AD where this computer is listed as
the IdentityReference on an abusable ACE. In other words, the number of objects in Active
Directory that this computer can take control of, without relying on security group delegation

	Group Delegated Object Control: The number of objects in AD where this computer has
control via security group delegation, regardless of how deep those group nestings may go

	Transitive Object Control: The number of objects this computer can gain control of by
performing ACL-only based attacks in Active Directory. In other words, the maximum number of
objects the computer can gain control of without needing to pivot to any other system in the
network, just by manipulating objects in the directory

Domains

At the top of the node info tab you’ll see this information:

	Users: The total number of user objects in the domain

	Groups: The total number of security groups in the domain

	Computers: The total number of computer objects in the domain

	OUs: The total number of organizational units in the domain

	GPOs: The total number of group policy objects in the domain

	Map OU Structure: Click this to see the entire tree structure, including all OUs, users,
and computers

Node Properties

	Object ID: The SID of the domain. We map this internally in neo4j to a property called
objectid to uniquely identify the node

	Domain Functional Level: The functional level of the Active Directory domain. This becomes
particularly relevant in certain attack scenarios, such as resource-based constrained
delegation

Extra Properties

This section displays some other information about the node, plus all other non-default,
string-type property values from Active Directory if you used the –CollectAllProperties flag. The
default properties you’ll see here include:

	distinguishedname: The distinguished name (DN) of the domain head object

	domain: The fully qualified name of the domain

	name: The name of the domain, this is what is displayed in the node label

Foreign Members

	Foreign Users: Users from other domains that have been added to security groups in this
domain

	Foreign Groups: Groups from other domains that have been added to security groups in this
domain

	Foreign Admins: Users in other domains that have been granted local admin rights on
computers in this domain

	Foreign GPO Controllers: Users in other domains that have been granted control of group
policy objects in this domain

Inbound Trusts

	First Degree Trusts: The number of other domains that directly trust this domain

	Effective Inbound Trusts: The number of other domains that trust this domain through
trusting other domains that trust this domain. Easier to understand by clicking the number

Outbound Trusts

	First Degree Trusts: The number of domains tha thtis domain directly trusts

	Effective Outbound Trusts: The number of domains this domain trusts by trusting other
domains

Inbound Object Control

	First Degree Controllers: The number of principals that are listed as an IdentityReference
on an abusable ACE on the domain head object. In other words, the number of principals that
have direct control of the domain head. Control of this object is incredibly dangerous, as
it gives principals the ability to perform the DCSync attack, or grant themselves any
privileges on any object in the directory

	Unrolled Controllers: The real number of principals that have control of the domain head
through nested security groups

	Transitive Controllers: The number of principals that can gain control of the domain head
by executing an ACL-only attack path, without the need to pivoting to any other computers in
the domain

	Calculated Principals with DCSync Privileges: The number of principals that have the
DCSync privilege, which is granted with the combination of two specific rights, GetChanges
and GetChangesAll

GPOs

At the top of the node info tab you will see this info about the GPO:

	GPO NAME@DOMAIN.COM The name of the GPO where “GPO NAME” is the display name of the GPO,
and DOMAIN.COM is the fully qualified name of the domain the GPO resides in

	Reachable High Value Targets: The number of high value targets reachable where an attack
path starts from this Group Policy Object.

Node Properties

	Object ID: The GUID of the GPO, pulled from the GUID property on the GPO from Active
Directory

	GPO File Path: The location on a domain controller where the Group Policy files for this
GPO are located. Particularly relevant for when you are doing group policy-based attacks,
or for pillaging group policy files for juicy information such as clear text passwords. For
more info about GPO-based attacks, see https://wald0.com/?p=179

Extra Properties

	distinguishedname The distinguished name (DN) of the GPO

	domain: The FQDN of the domain this GPO resides in

	name: The name of the GPO, useful for differentiating GPOs with the same name in different
domains

Affected Objects

	Directly Affected OUs: GPOs can be linked to domains, OUs, and sites. This number shows
the number of domain/OU objects this GPO is linked to

	Affected OUs: The actual number of OUs affected by the GPO, regardless of OU tree depth

	Computer Objects: The number of computers this GPO applies to. Click the number to
visually see how the GPO applies to those computers

	User Objects: The number of user objects this GPO applies to. Click the number to
visually see how the GPO applies to those users

Inbound Object Control

	Explicit Object Controllers: The number of principals that are listed as the
IdentityReference on an abusalbe ACE on the GPO’s DACL. In other words, the number of
principals that can modify the GPO

	Unrolled Object Controllers: The real number of principals that have control of this GPO
through security group nestings

	Transitive Object Controllers: The number of principals that can take control of this GPO
through ACL-based attacks

OUs

At the top of the node info tab you will see this info about the OU:

	OU NAME@DOMAIN.COM: The UPN formatted name of the OU

	See OU Within Domain Tree: Click this to see the placement of the OU within the OU tree

Node Properties

	Object ID: The GUID of the OU, mapped internally in the neo4j database as its objectid

	Blocks Inheritance: Whether the OU blocks group policy enforcement inheritence. For more
information about this concept, see https://wald0.com/?p=179

Extra Properties

	distinguishedname: The distinguished name (DN) of the OU

	domain: The FQDN of the domain the OU resides in

	name: The name of the OU, used to differentiate OUs with the same name in different
domains

Affecting GPOs

	GPOs Directly Affecting This OU: The number of OUs that are directly linked to this OU

	GPOs Affecting This OU: The number of GPOs that apply to this OU, regardless of how
many levels deep the OU is from the actual object the GPO is applied to. Easier to understand
by clicking the number and visually seeing the connections

Descendant Objects

	Total User Objects: The total number of users under this OU, regardless of whether those
users belong to OUs under this OU, etc.

	Total Group Objects: The number of security groups under this OU

	Total Computer Objects: The number of computer objects under this OU

	Sibling Objects within OU: The total number of other objects that belong to the same OU
this OU belongs to

AZTenant

At the top of the node info tab you will see the following info:

	TENANT NAME: The name of the tenant in Azure.

Node Properties

	Object ID: The tenant ID for the tenant.

Extra Properties

	Object ID: The tenant ID for the tenant.

Descendant Objects

	Subscriptions: The subscriptions that fall under the tenant

	Total VM Objects: The virtual machine resources in Azure resources

	Total Resource Group Objects: The resource groups contained within the subscriptions under the tenant

	Total Key Vault Objects: The key vault resources within Azure resources

	Total User Objects: The number of users in AzureAD

	Total Group Objects: The number of groups in AzureAD

Inbound Control

	Global Admins: Principals with the Global Admin role activated against this tenant

	Privileged Role Admins: Principlas with the Privileged Role Admin role activated against this tenant

	Transitive Object Controllers: Principals with an object-control attack path to the tenant

AZUser

At the top of the node info tab you will see the following info:

	USERNAME@DOMAIN.COM: the fully formatted name of the user, directly from Azure.

Overview

	Sessions: The count of computers this user has been observed
logging onto. Click this number to visually see the connections
between those computers and this user.

	Reachable High Value Targets: The count of how many high value
targets this user has an attack path to. A high value target is by
default any computer or user that belongs to the domain admins,
domain controllers, and several other high privilege Active Directory
groups. Click this number to see the shortest attack paths from this user
to those high value targets.

Node Properties

	Object ID: The user’s object ID in AzureAD.

Group Membership

This section displays stats about Active Directory security groups the user
belongs to:

	First Degree Group Memberships: The AzureAD security groups the user is
directly added to.

	Unrolled Group Membership: Groups that can be added to groups in AzureAD.

Outbound Object Control

	First Degree Object Control: The number of objects where this user has direct control of in AzureAD and Azure resources.

	Group Delegated Object Control: The number of objects in AzureAD and Azure resources where the group the user is assigned to has direct control over.

	Transitive Object Control: The number of objects this user can gain control
of by performing ACL-only based attacks in Active Directory. In other words,
the maximum number of objects the user can gain control of without needing
to pivot to any other system in the network, just by manipulating objects
in the directory

Inbound Object Control

	Explicit Object Controllers: The number of principals that have direct control of this user.

	Unrolled Object Controllers: The number of principals that have
control of this object through Azure group delegation.

	Transitive Object Controllers: The number of objects in AD that can achieve
control of this object through ACL-based attacks

AZGroup

At the top of the node info tab you will see the following info:

	GROUPNAME: The name of the AzureAD Group.

Overview

	Sessions: The number of on-premise computers that users belonging to this group have
been seen logging onto. This will include users that belong to this group through
any number of nested memberships. Very useful for targetting users that belong
to a particular security group

	Reachable High Value Targets: The count of how many high value targets this
group (and therefore the users belonging to this group) has an attack path to.
A high value target is by default any computer or user that belongs to the domain
admins, domain controllers, and several other high privilege on-premise Active Directory
groups. Click this number to see the shortest attack paths from this user to
those high value targets.

Node Properties

	Object ID: The group’s objectID in AzureAD

Extra Properties

	Object ID: The group’s objectID in AzureAD

Group Members

	Direct Members: The number of principals that have been directly added to
this in AzureAD.

	Unrolled Members: The actual number of users that effectively belong to
this group, no matter how many layers of nested group membership that goes

	On-Prem Members: The number of users that contain an on-premise SID that are members of the group.

Group Membership

	First Degree Group Membership: The number of groups this group has been
added to

	Unrolled Member Of: The number of groups this group belongs to through
nested group memberships

Outbound Object Control

	First Degree Object Control: In AzureAD, the number of objects where this group has direct control of.

	Group Delegated Object Control: The number of objects where this
group has control via security group delegation, regardless of how deep those
group nestings may go.

	Transitive Object Control: The number of objects this group can gain control through an object-control abuse attack path.

Inbound Object Control

	Explicit Object Controllers: In AzureAD, the number of principals that have direct control of this group.

	Unrolled Object Controllers: The actual number of principals that have
control of this group through security group delegation. This number can
sometimes be wildly higher than the previous number

	Transitive Object Controllers: The number of objects that can assume control of this group through an object-control attack path.

AZApp

At the top of the node info tab you will see the following info:

	APPID: The application ID of the application in AzureAD.

Inbound Object Control

	Explicit Object Controllers: The principals in AzureAD that are part of a role which can directly control the application.

	Unrolled Object Controllers: The number of principals that can control the application through group membership and the roles applied to that group.

	Transitive Object Controllers: The number of objects in AzureAD that can achieve control of this object through an object-control attack path.

AZSubscription

At the top of the node info tab you will see the following info:

	See Subscription Under Tenant: See where the subscription lives relative to the tenant it trusts.

Node Properties

	Object ID: The Azure objectid for the resource group.

Descendent Objects

	Total VM Objects: The VMs in Azure that belong to the subscription

	Total Resource Group Objects: The resource groups that belong to the subscription

	Total Key Vault Objects: The Key vaults in Azure that belong to the subscription

AZResourceGroup

At the top of the node info tab you will see the following info:

	RESOURCEGROUPNAME: The full name of the resource group.

Node Properties

	Object ID: The Azure objectid for the resource group.

Descendent Objects

	Descendent VMs: The VMs in Azure that belong to the resource group

	Descendent KeyVaults: The Key vaults in Azure that belong to the resource group

Inbound Object Control

	Explicit Object Controllers: The principals in AzureAD that directly can control the resource group.

	Unrolled Object Controllers: The number of principals that can control the resource group through group membership.

	Transitive Object Controllers: The number of objects in AzureAD that can achieve control of this object through object-control attack paths.

AZVM

At the top of the node info tab you will see the following info:

	COMPUTERNAME: The full name of the VM

Overview

	See VM within Tenant: Unrolls the VM membership within Azure, displaying the VM’s resource group & subscription.

	Managed Identities: Shows the assigned managed identity service principals for the VM.

Node Properties

	Object ID: The Azure objectid for the VM.

Extra Properties

	Object ID: The Azure objectid for the computer.

Inbound Execution Privileges

	First Degree Execution Rights: Principals that have the ability to execute commands or directly log onto the machine.

	Group Delegated Execution Rights: Groups that have the ability to execute commands or directly log onto the machine.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to manage or execute code on the machine.

	Unrolled Object Controllers: The actual number of principals that have control of this
object through security group delegation. This number can sometimes be wildly higher than
the previous number

	Transitive Object Controllers: The number of objects in AzureAD that can achieve control of this object through object-control attack paths.

AZDevice

At the top of the node info tab you will see the following info:

	DEVICENAME: The full name of the device

Node Properties

	Object ID: The Azure objectid for the device.

Inbound Execution Privileges

	Owners: Principals that have the ability to execute commands or directly log onto the machine.

	InTune Admins: Principals that have the ability to setup InTune scripts to run on the machine.

AZServicePrincipal

At the top of the node info tab you will see the following info:

	ObjectID: The object ID of the service principal in AzureAD.

Group Membership

This section displays stats about Active Directory security groups the user
belongs to:

	First Degree Group Memberships: The AzureAD security groups the service principal is
directly added to.

	Unrolled Group Membership: Groups that are added to groups in AzureAD.

Outbound Object Control

	First Degree Object Control: The number of objects where this service principal has direct control of in AzureAD and Azure resources.

	Group Delegated Object Control: The number of objects in AzureAD and Azure resources where the group the service principal is assigned to has direct control over.

	Transitive Object Control: The number of objects this service principal can gain control of by performing object-control attack paths

Inbound Object Control

	Explicit Object Controllers: The number of principals that have direct control of this service principal.

	Unrolled Object Controllers: The number of principals that have
control of this object through Azure group delegation.

	Transitive Object Controllers: The number of objects in AD that can achieve
control of this object through object-control attack paths

AZAutomationAccount

Automation Accounts are one of several services falling under the umbrella of “Azure Automation”. Azure admins can use Automation Accounts to automate a variety of business operations, such as creating and configuring Virtual Machines in Azure.

Automation Accounts offer different process automation services, but at the core of all those services are what are called Runbooks.

Read more about how attackers abuse Automation Accounts in this blog post: https://medium.com/p/82667d17187a

At the top of the node info tab you will see the following info:

	NAME: The full name of the asset

Overview

	See asset within Tenant: Unrolls the asset’s membership within Azure, displaying the asset’s resource group & subscription.

	Managed Identities: Shows the assigned managed identity service principals for the asset.

Node Properties

	Object ID: The Azure objectid for the asset.

Extra Properties

	tenantid: The Azure tenant ID for the asset.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to control this asset.

	Unrolled Object Controllers: The actual number of principals that have control of this
asset through security group delegation. This number can sometimes be wildly higher than
the previous number.

	Transitive Object Controllers: The number of assets in Azure that can achieve control of this object through control attack paths.

AZContainerRegistry

Azure Container Registry (ACR) is Microsoft’s implementation of the Open Container Initiative’s (OCI) Distribution Spec, which itself is based on the original Docker Registry protocol. In plain English: ACR stores and manages container images for you. ACR serves those images, making them available to run locally, on some remote system, or as an Azure Container Instance. You can think of ACR as being somewhat analogous to your very own Docker Registry.

Read more about how attackers abuse Container Registries in this blog post: https://medium.com/p/1f407bfaa465

At the top of the node info tab you will see the following info:

	NAME: The full name of the asset

Overview

	See asset within Tenant: Unrolls the asset’s membership within Azure, displaying the asset’s resource group & subscription.

	Managed Identities: Shows the assigned managed identity service principals for the asset.

Node Properties

	Object ID: The Azure objectid for the asset.

Extra Properties

	tenantid: The Azure tenant ID for the asset.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to control this asset.

	Unrolled Object Controllers: The actual number of principals that have control of this
asset through security group delegation. This number can sometimes be wildly higher than
the previous number.

	Transitive Object Controllers: The number of assets in Azure that can achieve control of this object through control attack paths.

AZFunctionApp

Functions are one of several services falling under the umbrella of “Azure Automation”. Azure admins can create functions using a variety of language (C#, Java, PowerShell, etc.), then run those functions on-demand in Azure. Functions are hosted and grouped together in Azure using Function Apps.

Read more about how attackers abuse Function Apps in this blog post: https://medium.com/p/300065251cbe

At the top of the node info tab you will see the following info:

	NAME: The full name of the asset

Overview

	See asset within Tenant: Unrolls the asset’s membership within Azure, displaying the asset’s resource group & subscription.

	Managed Identities: Shows the assigned managed identity service principals for the asset.

Node Properties

	Object ID: The Azure objectid for the asset.

Extra Properties

	tenantid: The Azure tenant ID for the asset.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to control this asset.

	Unrolled Object Controllers: The actual number of principals that have control of this
asset through security group delegation. This number can sometimes be wildly higher than
the previous number.

	Transitive Object Controllers: The number of assets in Azure that can achieve control of this object through control attack paths.

AZLogicApp

Logic Apps are another Azure service falling under the general umbrella of “Azure Automation”. Admins can use Logic Apps to construct what are called “workflows”. Workflows are comprised of triggers and actions that occur as a result of those triggers.

Read more about how attackers abuse Logic Apps in this blog post: https://medium.com/p/52b29354fc54

At the top of the node info tab you will see the following info:

	NAME: The full name of the asset

Overview

	See asset within Tenant: Unrolls the asset’s membership within Azure, displaying the asset’s resource group & subscription.

	Managed Identities: Shows the assigned managed identity service principals for the asset.

Node Properties

	Object ID: The Azure objectid for the asset.

Extra Properties

	tenantid: The Azure tenant ID for the asset.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to control this asset.

	Unrolled Object Controllers: The actual number of principals that have control of this
asset through security group delegation. This number can sometimes be wildly higher than
the previous number.

	Transitive Object Controllers: The number of assets in Azure that can achieve control of this object through control attack paths.

AZManagedCluster

Azure Kubernetes Service Managed Clusters provide Azure admins an easy way to create and maintain Kubernetes clusters.

Read about how attackers abuse AKS Managed Clusters in this blog post: https://www.netspi.com/blog/technical/cloud-penetration-testing/extract-credentials-from-azure-kubernetes-service/

At the top of the node info tab you will see the following info:

	NAME: The full name of the asset

Overview

	See asset within Tenant: Unrolls the asset’s membership within Azure, displaying the asset’s resource group & subscription.

	Managed Identities: Shows the assigned managed identity service principals for the asset.

Node Properties

	Object ID: The Azure objectid for the asset.

Extra Properties

	tenantid: The Azure tenant ID for the asset.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to control this asset.

	Unrolled Object Controllers: The actual number of principals that have control of this
asset through security group delegation. This number can sometimes be wildly higher than
the previous number.

	Transitive Object Controllers: The number of assets in Azure that can achieve control of this object through control attack paths.

AZVMScaleSet

Azure Virtual Machine Scale Sets are used by AKS Managed Clusters to spin up and spin down compute nodes. They can also by used by admins to spin up and manage virtual machines outside of the AKS use-case.

Read about how attackers abuse Virtual Machine Scale Sets in this blog post: https://www.netspi.com/blog/technical/cloud-penetration-testing/extract-credentials-from-azure-kubernetes-service/

At the top of the node info tab you will see the following info:

	NAME: The full name of the asset

Overview

	See asset within Tenant: Unrolls the asset’s membership within Azure, displaying the asset’s resource group & subscription.

	Managed Identities: Shows the assigned managed identity service principals for the asset.

Node Properties

	Object ID: The Azure objectid for the asset.

Extra Properties

	tenantid: The Azure tenant ID for the asset.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to control this asset.

	Unrolled Object Controllers: The actual number of principals that have control of this
asset through security group delegation. This number can sometimes be wildly higher than
the previous number.

	Transitive Object Controllers: The number of assets in Azure that can achieve control of this object through control attack paths.

AzWebApp

Azure App Service is a Platform-as-a-Service product that promises to improve web application deployment, hosting, availability, and security. Web Apps hosted by Azure App Service are organized into Azure App Service Plans, which are Virtual Machines that the Web Apps in that plan all run on.

Read more about how attackers abuse Web Apps in this blog post: https://medium.com/p/c3adefccff95

At the top of the node info tab you will see the following info:

	NAME: The full name of the asset

Overview

	See asset within Tenant: Unrolls the asset’s membership within Azure, displaying the asset’s resource group & subscription.

	Managed Identities: Shows the assigned managed identity service principals for the asset.

Node Properties

	Object ID: The Azure objectid for the asset.

Extra Properties

	tenantid: The Azure tenant ID for the asset.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to control this asset.

	Unrolled Object Controllers: The actual number of principals that have control of this
asset through security group delegation. This number can sometimes be wildly higher than
the previous number.

	Transitive Object Controllers: The number of assets in Azure that can achieve control of this object through control attack paths.

AzManagementGroup

At the top of the node info tab you will see the following info:

	NAME: The full name of the asset

Overview

	Reachable High Value Targets: The count of how many high value
targets this asset has an attack path to. Click this number to see the shortest attack paths from this asset
to those high value targets.

Node Properties

	Object ID: The Azure objectid for the asset.

	Tenant ID: The Azure tenant ID for the asset.

Extra Properties

No extra properties.

Descendent Objects

The number of assets under this asset categorized in Azure asset types.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to control this asset.

	Unrolled Object Controllers: The actual number of principals that have control of this
asset through security group delegation. This number can sometimes be wildly higher than
the previous number.

	Transitive Object Controllers: The number of assets in Azure that can achieve control of this object through control attack paths.

AzRole

At the top of the node info tab you will see the following info:

	NAME: The full name of the role

Node Properties

	Object ID: The Azure objectid for the role.

	Display Name: The display name of the role.

	Enabled: Whether the role is enabled or disabled.

	Description: Description of the role.

	Template ID: Template ID of the role.

	Tenant ID: The Azure tenant ID for the role.

Extra Properties

	isbuiltin: Whether the role is an Azure built-in role or custom.

Assignments

	Active Assignments: The assets with this role actively assigned.

AZKeyVault

At the top of the node info tab you will see the following info:

	NAME: The full name of the asset

Node Properties

	Object ID: The Azure objectid for the asset.

	Enable RBAC Authorization: Whether the Key Vault has RBAC authorization enabled or not.

	Tenant ID: The Azure tenant ID for the asset.

Vault Readers

The number of assets that can read keys, certificates, and secrets in the Key Vault.

Inbound Object Control

	Explicit Object Controllers: The number of principals that are in a role that has the ability to control this asset.

	Unrolled Object Controllers: The actual number of principals that have control of this
asset through security group delegation. This number can sometimes be wildly higher than
the previous number.

	Transitive Object Controllers: The number of assets in Azure that can achieve control of this object through control attack paths.

 Edges

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: About BloodHound Edges [https://support.bloodhoundenterprise.io/hc/en-us/articles/17224136169371]

Edges

Edges are part of the graph construct, and are represented as links that
connect one node to another. For example, this shows the user node for
David McGuire connected to two groups, “Domain Admins” and “Domain Users”,
via the “MemberOf” edge, indicating this user belongs to both of those
groups:

[image: David McGuire is a member of two groups]
The direction of the edge always indicates the direct of attack, or the
direction of escalating privileges. For example, because the David McGuire
user belongs to the Domain Users and Domain Admins group, his user has the
same privileges both of those groups have.

AdminTo

This edge indicates that principal is a local administrator on the target
computer. By default, administrators have several ways to perform remote
code execution on Windows systems, including via RDP, WMI, WinRM, the
Service Control Manager, and remote DCOM execution.

Further, administrators have several options for impersonating other users
logged onto the system, including plaintext password extraction, token
impersonation, and injecting into processes running as another user.

Finally, administrators can often disable host-based security controls that
would otherwise prevent the aforementioned techniques.

Abuse Info

There are several ways to pivot to a Windows system. If using Cobalt
Strike’s beacon, check the help info for the commands “psexec”, “psexec_psh”,
“wmi”, and “winrm”. With Empire, consider the modules for Invoke-PsExec,
Invoke-DCOM, and Invoke-SMBExec.

With Metasploit, consider the modules “exploit/windows/smb/psexec”,
“exploit/windows/winrm/winrm_script_exec”, and
“exploit/windows/local/ps_wmi_exec”.

Additionally, there are several manual methods for remotely executing code on
the machine, including via RDP, with the service control binary and
interaction with the remote machine’s service control manager, and remotely
instantiating DCOM objects. For more information about these lateral movement
techniques, see the References section below.

Gathering credentials

The most well-known tool for gathering credentials from a Windows system is
mimikatz. mimikatz is built into several agents and toolsets, including
Cobalt Strike’s beacon, Empire, and Meterpreter. While running in a high
integrity process with SeDebugPrivilege, execute one or more of mimikatz’s
credential gathering techniques (e.g.: sekurlsa::wdigest,
sekurlsa::logonpasswords, etc.), then parse or investigate the output to
find clear-text credentials for other users logged onto the system.

You may also gather credentials when a user types them or copies them to
their clipboard! Several keylogging capabilities exist, several agents and
toolsets have them built-in. For instance, you may use meterpreter’s
“keyscan_start” command to start keylogging a user, then “keyscan_dump” to
return the captured keystrokes. Or, you may use PowerSploit’s
Invoke-ClipboardMonitor to periodically gather the contents of the user’s
clipboard.

Token Impersonation

You may run into a situation where a user is logged onto the system, but
you can’t gather that user’s credential. This may be caused by a host-based
security product, lsass protection, etc. In those circumstances, you may
abuse Windows’ token model in several ways. First, you may inject your agent
into that user’s process, which will give you a process token as that user,
which you can then use to authenticate to other systems on the network. Or,
you may steal a process token from a remote process and start a thread in
your agent’s process with that user’s token. For more information about
token abuses, see the References tab.

Disabling host-based security controls

Several host-based controls may affect your ability to execute certain
techniques, such as credential theft, process injection, command line
execution, and writing files to disk. Administrators can often disable these
host-based controls in various ways, such as stopping or otherwise disabling
a service, unloading a driver, or making registry key changes. For more
information, see the References section below.

Opsec Considerations

There are several forensic artifacts generated by the techniques described
above. For instance, lateral movement via PsExec will generate 4697 events on
the target system. If the target organization is collecting and analyzing those
events, they may very easily detect lateral movement via PsExec.

Additionally, an EDR product may detect your attempt to inject into lsass and
alert a SOC analyst. There are many more opsec considerations to keep in mind
when abusing administrator privileges. For more information, see the References
section below.

References

https://attack.mitre.org/wiki/Lateral_Movement

Gathering Credentials

	http://blog.gentilkiwi.com/mimikatz

	https://github.com/gentilkiwi/mimikatz

	https://adsecurity.org/?page_id=1821

	https://attack.mitre.org/wiki/Credential_Access

Token Impersonation

	https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-security-implications-of-windows-access-tokens-2008-04-14.pdf

	https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Invoke-TokenManipulation.ps1

	https://attack.mitre.org/wiki/Technique/T1134

Disabling host-based security controls

	https://blog.netspi.com/10-evil-user-tricks-for-bypassing-anti-virus/

	https://www.blackhillsinfosec.com/bypass-anti-virus-run-mimikatz/

Opsec Considerations

	https://blog.cobaltstrike.com/2017/06/23/opsec-considerations-for-beacon-commands/

MemberOf

Groups in active directory grant their members any privileges the group itself
has. If a group has rights to another principal, users/computers in the group,
as well as other groups inside the group inherit those permissions.

Abuse Info

No abuse is necessary. This edge simply indicates that a principal belongs to a
security group.

Opsec Considerations

No opsec considerations apply to this edge.

References

	https://adsecurity.org/?tag=ad-delegation

	https://www.itprotoday.com/management-mobility/view-or-remove-active-directory-delegated-permissions

HasSession

When a user authenticates to a computer, they often leave credentials exposed on
the system, which can be retrieved through LSASS injection, token manipulation
or theft, or injecting into a user’s process.

Any user that is an administrator to the system has the capability to retrieve
the credential material from memory if it still exists.

Note

A session does not guarantee credential material is present, only possible.

This video explains exactly how BloodHound’s session data collection method works:

 Further Reading/Viewing

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: BloodHound Support [https://support.bloodhoundenterprise.io/hc/en-us]

Further Reading/Viewing

Further reading and viewing of content related to BloodHound

Blogs from the Authors

https://wald0.com/?p=14
https://wald0.com/?p=68
https://wald0.com/?p=112
https://wald0.com/?p=179

 BloodHound JSON Formats

Note

This documentation applies to Legacy BloodHound and is no longer maintained.

See up-to-date documentation for BloodHound CE here: BloodHound Support [https://support.bloodhoundenterprise.io/hc/en-us]

BloodHound JSON Formats

Data exported by SharpHound is stored in JSON files. There are eight
seperate JSON files that provide different data. The structure is
documented here

Basic JSON Format

All JSON files end with a meta tag that contains the number of objects in the file as well as the type of data in the file. The actual data is stored in an array with a key that matches the string in the meta tag.

{
 "users":[
 {
 "name": "ADMIN@TESTLAB.LOCAL"
 }
],
 "meta":{
 "type" : "users",
 "count": 1,
 "version": 3
 }
}

Possible types/meta tags are:
* users
* groups
* ous
* computers
* gpos
* domains

Object Formats

Users

{
 "Properties": {
 "highvalue": false,
 "name": "ADMINISTRATOR@TESTLAB.LOCAL",
 "domain": "TESTLAB.LOCAL",
 "objectid": "S-1-5-21-3130019616-2776909439-2417379446-500",
 "distinguishedname": "CN=Administrator,CN=Users,DC=testlab,DC=local",
 "description": "Built-in account for administering the computer/domain",
 "dontreqpreauth": false,
 "passwordnotreqd": false,
 "unconstraineddelegation": false,
 "sensitive": false,
 "enabled": true,
 "pwdneverexpires": true,
 "lastlogon": 1579223741,
 "lastlogontimestamp": 1578330279,
 "pwdlastset": 1568654366,
 "serviceprincipalnames": [],
 "hasspn": false,
 "displayname": null,
 "email": null,
 "title": null,
 "homedirectory": null,
 "userpassword": null,
 "admincount": true,
 "sidhistory": []
 },
 "AllowedToDelegate": [],
 "SPNTargets": [],
 "PrimaryGroupSid": "S-1-5-21-3130019616-2776909439-2417379446-513",
 "HasSIDHistory": [],
 "ObjectIdentifier": "S-1-5-21-3130019616-2776909439-2417379446-500",
 "Aces": [
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "Owner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "All",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "All",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "All",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": false
 }
]
}

Computers

{
 "Properties": {
 "haslaps": false,
 "highvalue": false,
 "name": "PRIMARY.TESTLAB.LOCAL",
 "domain": "TESTLAB.LOCAL",
 "objectid": "S-1-5-21-3130019616-2776909439-2417379446-1001",
 "distinguishedname": "CN=PRIMARY,OU=Domain Controllers,DC=testlab,DC=local",
 "description": null,
 "enabled": true,
 "unconstraineddelegation": true,
 "serviceprincipalnames": [
 "Dfsr-12F9A27C-BF97-4787-9364-D31B6C55EB04/PRIMARY.testlab.local",
 "ldap/PRIMARY.testlab.local/ForestDnsZones.testlab.local",
 "ldap/PRIMARY.testlab.local/DomainDnsZones.testlab.local",
 "DNS/PRIMARY.testlab.local",
 "GC/PRIMARY.testlab.local/testlab.local",
 "RestrictedKrbHost/PRIMARY.testlab.local",
 "RestrictedKrbHost/PRIMARY",
 "RPC/a052f434-0629-458a-bd51-48118140ae3c._msdcs.testlab.local",
 "HOST/PRIMARY/TESTLAB",
 "HOST/PRIMARY.testlab.local/TESTLAB",
 "HOST/PRIMARY",
 "HOST/PRIMARY.testlab.local",
 "HOST/PRIMARY.testlab.local/testlab.local",
 "E3514235-4B06-11D1-AB04-00C04FC2DCD2/a052f434-0629-458a-bd51-48118140ae3c/testlab.local",
 "ldap/PRIMARY/TESTLAB",
 "ldap/a052f434-0629-458a-bd51-48118140ae3c._msdcs.testlab.local",
 "ldap/PRIMARY.testlab.local/TESTLAB",
 "ldap/PRIMARY",
 "ldap/PRIMARY.testlab.local",
 "ldap/PRIMARY.testlab.local/testlab.local"
],
 "lastlogontimestamp": 1583951963,
 "pwdlastset": 1583951963,
 "operatingsystem": "Windows Server 2012 R2 Standard Evaluation"
 },
 "AllowedToDelegate": [],
 "AllowedToAct": [],
 "PrimaryGroupSid": "S-1-5-21-3130019616-2776909439-2417379446-516",
 "Sessions": [
 {
 "UserId": "S-1-5-21-3130019616-2776909439-2417379446-500",
 "ComputerId": "S-1-5-21-3130019616-2776909439-2417379446-1001"
 }
],
 "LocalAdmins": [
 {
 "MemberId": "S-1-5-21-3130019616-2776909439-2417379446-500",
 "MemberType": "User"
 },
 {
 "MemberId": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "MemberType": "Group"
 },
 {
 "MemberId": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "MemberType": "Group"
 }
],
 "RemoteDesktopUsers": [],
 "DcomUsers": [],
 "PSRemoteUsers": [],
 "ObjectIdentifier": "S-1-5-21-3130019616-2776909439-2417379446-1001",
 "Aces": [
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "Owner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "GenericAll",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "GenericAll",
 "AceType": "",
 "IsInherited": true
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": true
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": true
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": true
 }
]
}

Groups

{
 "Properties": {
 "highvalue": true,
 "name": "ADMINISTRATORS@TESTLAB.LOCAL",
 "domain": "TESTLAB.LOCAL",
 "objectid": "TESTLAB.LOCAL-S-1-5-32-544",
 "distinguishedname": "CN=Administrators,CN=Builtin,DC=testlab,DC=local",
 "description": "Administrators have complete and unrestricted access to the computer/domain",
 "admincount": true
 },
 "Members": [
 {
 "MemberId": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "MemberType": "Group"
 },
 {
 "MemberId": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "MemberType": "Group"
 },
 {
 "MemberId": "S-1-5-21-3130019616-2776909439-2417379446-500",
 "MemberType": "User"
 }
],
 "ObjectIdentifier": "TESTLAB.LOCAL-S-1-5-32-544",
 "Aces": [
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "Owner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": false
 }
]
}

Domains

{
 "Properties": {
 "highvalue": true,
 "name": "TESTLAB.LOCAL",
 "domain": "TESTLAB.LOCAL",
 "objectid": "S-1-5-21-3130019616-2776909439-2417379446",
 "distinguishedname": "DC=testlab,DC=local",
 "description": null,
 "functionallevel": "2012 R2"
 },
 "Users": [
 "S-1-5-21-3130019616-2776909439-2417379446-2103",
 "S-1-5-21-3130019616-2776909439-2417379446-500",
 "S-1-5-21-3130019616-2776909439-2417379446-501",
 "S-1-5-21-3130019616-2776909439-2417379446-502",
 "S-1-5-21-3130019616-2776909439-2417379446-1105",
 "S-1-5-21-3130019616-2776909439-2417379446-2106",
 "S-1-5-21-3130019616-2776909439-2417379446-2107"
],
 "Computers": [
 "S-1-5-21-3130019616-2776909439-2417379446-2105"
],
 "ChildOus": [
 "0DE400CD-2FF3-46E0-8A26-2C917B403C65",
 "2A374493-816A-4193-BEFD-D2F4132C6DCA"
],
 "Trusts": [
 {
 "TargetDomainSid": "S-1-5-21-3084884204-958224920-2707782874",
 "IsTransitive": true,
 "TrustDirection": 3,
 "TrustType": 4,
 "SidFilteringEnabled": true,
 "TargetDomainName": "EXTERNAL.LOCAL"
 }
],
 "Links": [
 {
 "IsEnforced": false,
 "Guid": "BE91688F-1333-45DF-93E4-4D2E8A36DE2B"
 }
],
 "RemoteDesktopUsers": [],
 "LocalAdmins": [],
 "DcomUsers": [],
 "PSRemoteUsers": [],
 "ObjectIdentifier": "S-1-5-21-3130019616-2776909439-2417379446",
 "Aces": [
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "Owner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "All",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "All",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "GenericAll",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-9",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "GetChanges",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "GetChangesAll",
 "IsInherited": false
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "GetChanges",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-498",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "GetChanges",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-516",
 "PrincipalType": "Group",
 "RightName": "ExtendedRight",
 "AceType": "GetChangesAll",
 "IsInherited": false
 }
]
}

GPOs

{
 "Properties": {
 "highvalue": false,
 "name": "DEFAULT DOMAIN POLICY@TESTLAB.LOCAL",
 "domain": "TESTLAB.LOCAL",
 "objectid": "BE91688F-1333-45DF-93E4-4D2E8A36DE2B",
 "distinguishedname": "CN={31B2F340-016D-11D2-945F-00C04FB984F9},CN=Policies,CN=System,DC=testlab,DC=local",
 "description": null,
 "gpcpath": "\\\\testlab.local\\sysvol\\testlab.local\\Policies\\{31B2F340-016D-11D2-945F-00C04FB984F9}"
 },
 "ObjectIdentifier": "BE91688F-1333-45DF-93E4-4D2E8A36DE2B",
 "Aces": [
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "Owner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "GenericWrite",
 "AceType": "",
 "IsInherited": false
 }
]
}

OUs

{
 "Properties": {
 "highvalue": false,
 "name": "DOMAIN CONTROLLERS@TESTLAB.LOCAL",
 "domain": "TESTLAB.LOCAL",
 "objectid": "0DE400CD-2FF3-46E0-8A26-2C917B403C65",
 "distinguishedname": "OU=Domain Controllers,DC=testlab,DC=local",
 "description": "Default container for domain controllers",
 "blocksinheritance": false
 },
 "Links": [
 {
 "IsEnforced": false,
 "Guid": "F5BDDA03-0183-4F41-93A2-DCA253BE6450"
 }
],
 "ACLProtected": false,
 "Users": [],
 "Computers": [
 "S-1-5-21-3130019616-2776909439-2417379446-1001"
],
 "ChildOus": [],
 "RemoteDesktopUsers": [],
 "LocalAdmins": [],
 "DcomUsers": [],
 "PSRemoteUsers": [],
 "ObjectIdentifier": "0DE400CD-2FF3-46E0-8A26-2C917B403C65",
 "Aces": [
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "Owner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-512",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": false
 },
 {
 "PrincipalSID": "S-1-5-21-3130019616-2776909439-2417379446-519",
 "PrincipalType": "Group",
 "RightName": "GenericAll",
 "AceType": "",
 "IsInherited": true
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteDacl",
 "AceType": "",
 "IsInherited": true
 },
 {
 "PrincipalSID": "TESTLAB.LOCAL-S-1-5-32-544",
 "PrincipalType": "Group",
 "RightName": "WriteOwner",
 "AceType": "",
 "IsInherited": true
 }
]
}

 Index

Index

_static/up-pressed.png

_images/neo4j_paths.png
Daniel > Downloads

Name

Bon
B cricates
B ort
Bt

B import
Bt

1
==

B oss

B plugins
B

B ucenses
B Lcensest
W neotj.cer

B Noncest
B RerovEst
B vpeRaDEt

neodj-community-4.4.17-windows > neodj-community-4.4.17

Environment Variables

Variable

1 variables

Variable

Date modified Tpe Size

27/01/2023 01:19 File folder

C:\Program Files\Microsoft\jdk-11.0.18.10-hotspot\

_images/node-search.gif
Start typing to search for a node. A

DAVID.MCGUIRE@CONTO!

:
a
SQLOT@CONTOSO.LOCAL

-

Memberof

_images/neo4j_error_1.png
icrosoft Windows [Version 10.6.19844.1288] Z
(c) Microsoft Corporation. All rights reserved. [

(COMMANDO 13/02/2023 6:22:56,28
\Users\Daniel\Downloads\neo;-community-4.4.17-windows\neod]-community-4.4.17\bin>neodj.bat install-service

ouldn't find prunsrv file for interacting with the windows service subsystem C:\Tools\neodj-community\neodj-community-4

.4.14-windows \bin\tools\prunsrv-ande4. exe

[Run with "--verbose’ for a more detailed error message.

COMMANDO 13/02/2023 6:23:13,47
:\Users\Daniel \Downloads\neod] - community-4.4.17-windows\neodj -community-4.4.17\bin>,

_static/up.png

_images/neo4j_error_2.png
ANDO 13/62/2623 6:27:68,31
Users\Daniel\Downloads \neoaj-community-4.4.17-windows\neodj-community-4.4.17\bin+>neod] . bat install-service

Error: Could not find or load main class org.neodj.server.startup.Neo4jConmand

aused by: java.lang.ClassNotFoundException: org.neodj.server.startup.NeodjCommand

ICOMMANDO 13/02/2023 6:27:21.06

_images/right-click-edge-help.gif
= DOMAIN ADMINS@CONTOSO.LOCAL A K

-«

Contains

WORKSTATION ADMINS@CONTOSBRAEER@CONT

02%

conians

o —— ; P

oucumnm@comusomcmm@comuhﬁf”%/\
Gonecns N ot

ebwot @
& 8 QG 8%
"TERMINAL SERVER LICENSE SERVERB@.SHMRESIUNDRCONT(ERS@CDNTMWﬁ[MTURS@
Con P Contains n .
s e, ey
RESEARCH AND DEVELOPMENT @CCREIDESEREACONTOSO.LOBADAMS@CONTOX CAL
conion A

P —
ACCOUNTING@CONTOSO.LOBREITZ@CONTOSO.LOCAL

0 witeowner apuink contans o
O SET ey Gy e
CHEDLER@CONTOSGQDERL PCL ENCI_AVE@CUNmmE@CONTDSO,liNS@COM
N Mot 3
— i -—
R&D CUMP\JTERS@CONTPASMGM) (=) ACHILES@CONTOSMMRISEADMINS@CON
0 M1 | CONTOSO.LOCAL S —nE
GMSA-SQLOT@CONTOSO0.LOCAL CONTOSO USERS@CUNTO”WCGUlRE@CONTU INS@CONTOSO.LOCAL

'SQLUSERS@CONTOSO.| Lgi ot
0 ’{n@comoso Log

DPOLOJAC@CONTOSO.LOCAL

v
(S .
DEFAULT DOMAIN POLICY@CONTOSO.! LMOSO LOCAL 1""'
-‘W MpsSession.
PCI COMPUTERS@C(—{m) MINISTRATOR@CONTOSO LOCAL

:g 'CI-SERVER-001.CONTOSO.LOCAL

ACCOUNT OPERATORS@CONTOSO.LOCAL.

(" ARawQueyA)

SR}

13

[CRC]

E

_images/right-click-group-node.png
14

— " DOMAIN ADMINS@CONTOSO.LOCAL
/DOMKIN/ ADMINS
Q Set as Starting Node

© Set as Ending Node

4 Shortest Paths to Here

4 Shortest Paths to Here from Owned

[#' Edit Node

! Mark Group as Owned

¥ Unmark Group as High Value

W Delete Node

_images/pathfinding.gif
Start typing to search for a node.

-«

DOMAIN USERS@CONTOSO.LOCAL

("~ ARawQueryA \

Q

23

te

[CRRC]

&

_images/raw-query.gif
= DOMAINUSERS@CONTOSOLOCAL A K

-«

DOMAIN ADMINS@CONTOSO.LOCAL >

3
DMINS@CONTOSO.LOCAL

_

INISTRATORS@CONTOSO.LOCAL.

DOMAIN USERS@CONTOSO.LOCAL

(ARawQuerya)

Q

133

13

[CRRC]

E

_images/run-raw-query.gif
= DOMAIN USERS@CONTOSO.LOCAL A W 7Y c
DOMAIN ADMINS@CONTOSO.LOCAL > S

&

®

[

DOMAIN USERS@CONTOSO.LOCAL
DOMAIN ADM| ONTOSO.LOCAL

g

ADMINISTRATORS@CONTOSO.LOCAL

_static/ajax-loader.gif

_images/edge-filtering.gif
= DOMAINUSERS@CONTOSOLOCAL A K

-«

DOMAIN ADMINS@CONTOSO.LOCAL >

3
DMINS@CONTOSO.LOCAL

e

INISTRATORS@CONTOSO.LOCAL.

DOMAIN USERS@CONTOSO.LOCAL

(ARawQuerya)

Q

133

13

[CRRC]

E

_images/java_home_check.png
User variables for Daniel

Variable Value

New Edit Delete

System variables

Variable Value ~

New Edit Delete

oK Cancel

_images/bloodhound-logon.png
BloodHound

HOUND

Log in to Neo4j Database

Database URL bolt://localhost:7687

DB Username neo4j

DB Password neo4j

' Save Password

_images/davidmcguire-edges.png
DO DMINS@CONTOSO.LOCAL
N\embe‘o‘
[]
-
DAVID.MCGUIRE@CONTOSO:
Me"’berof
o

DOMAIN USERS@CONTOSO.LOCAL

_images/java_home_variable.png
custom satup [T

Select the way you want features to be installed. ..

Clckthe icons n the tree below to change the way festures wil be nstalled.

B 53] K with Hotspot Set JAVA_HOME environment
Variable.

This feature requires 2B on your
hard drive.

Browse.

et ks soce [ot cancl

nav.xhtml

 Table of Contents

 		
 BloodHound: Six Degrees of Domain Admin

_images/bloodhound-initial-query.png
BloodHound

= Start typing to search for a node... A K Y s
X
s
2 ®
DAVID.MCGUIRE@CONTO!
=
o
H
a MemberOf i :&:
SQLOT@CONTOSO.LOCAL N ADMINS@CONTOSO.LOCAL
°
-
ADMINISTRATOR@CONTOSO.LOCAL
+

| (ARaw Querya \)

_static/comment.png

_images/bloodhound-logo.png

_static/down-pressed.png

_static/comment-bright.png

_images/SharpHoundCheatSheet.png
